Performance Analysis and Consolidation Engineering (*PACE*)

Air Force Research Laboratory

Information Directorate
Information and Intelligence Exploitation Division
Intelligence Data Handling Branch
AFRL/IFEB

John Vona, Branch Chief, vonaj@rl.af.mil, (315)-330-3601 Anthony Macera, PACE Project Manager, maceraa@rl.af.mil, (315)-330-2321

http://www.if.afrl.af.mil/tech/programs/pace/

Why PACE?

• Reduce O&M costs

- More cost-effective use of computing resources
 - Accurately determine platform configurations that meet performance requirements.
 - Plan system capacity to meet future performance demands.
 - Reduce hardware costs with fewer deployed servers.
 - Establish a "Buying Guide" for site planning to accommodate new and upgraded applications
- Reduce costs for software licenses.
- Develop systems engineering processes for USIGS integration
 - Start early in USIGS life cycle to create the right "culture" for development
 - Apply state-of-the-art commercial practices and tools to insure quality and cost-effective development practices

Why PACE?

- Reduce costs for fail-over back-up systems
 - Consolidated server can provide back up for multiple systems
- Move toward elimination of overlapping application functionality
 - Consolidated applications can share data, services, and support applications

What is PACE?

Methodology

documented approach for conducting performance analyses

Capacity Planning

plan for anticipated load and usage changes

Tuning and Troubleshooting

 identify individual application issues and make platform changes to improve performance

• Tools

 use sophisticated commercial products and customized publicly available software

What is PACE?

Consolidated Installation Procedures

 reconcile installation procedures for convenient installation of consolidated applications

Consolidated Database Services

determine database server configuration to support multiple applications

Version Reconciliation

determine version compatibility for supporting software to avoid redundancy

Buying Guide

catalogue of configurations and performance characteristics

PACE in the Application Life Cycle

Conceptual Design for Performance Analysis

PACE Methodology

Iterative 5-step Process for Single and Consolidated Application Platforms

- Application Installation
- Application Characterization
- Load Generation
- Testing
- Analysis

Application Installation

- Installation as per application documentation.
- Understanding required administrative tasks; e.g., setting up user accounts, audit management backups.
- Integration onto consolidated platform after individual application characterization.

Application Characterization

- Identify processes, COTS utilization; e.g., SYBASE
- Determine profile; e.g. memory usage, I/O requirements, network utilization
- Establish usage scenarios; how is application typically used at sites
- Variety of software tools to examine application in quiescent and active states

Load Generation

- Simulate real-world usage by recording actual usage and replaying in test laboratory.
- Scaling simulation for in-the-field conditions; e.g., number of users, hw and sw configurations.
- Create multiple application loading scenarios; e.g., heavy, medium, light.
- Rational's Performance Studio automates much of the processing

Using Performance Studio

1. Create a Rational repository in Rational Administrator to store test assets.

2. Record scripts in Rational Robot that emulate client/server conversations.

Using Performance Studio

3. Create schedules in rational Loadtest that emulate client sending requests to a server

4. Run and monitor the schedules as they add load to your database and Web servers.

Testing

- Run varying load scenarios and collect performance data
- Monitor performance features during testing
- Test runs are automated using Rational Performance Studio
- Performance metric data is recorded by Landmark's PerformanceWorks, SE Toolkit, Ethereal, Memtool, Proctool, and Strace

Analysis

- Analyze client throughput looking for anamolies and constraints
- Compare performance data with recommended guidelines and expected behavior
- Compare performance data before/after configuration changes and tuning
- Use capacity planning models to improve performance, implement results of models where possible

Analysis for Performance Tuning

- OS configuration; e.g., priority paging, dynamic load balancing
- DBMS configuration, e.g. query caching
- Network topology and configuration, e.g., buffer sizes for network subsystems
- Hardware recommendations, e.g., more or faster processors

Analysis for Performance Troubleshooting

- Network problems, e.g., high collision or retransmission rates
- I/O bottlenecks, e.g., high activity on single disk
- High context switching or mutex locking (high kernel resource contention and/or inefficient use of multiple CPU's)

The Case for Capacity Planning

© 1998 Terex Corporation

Jeep® Cherokee

New Unit Rig MT5500 AC Drive Haul Truck

To scale		
VEHICLE	Jeep®Cherokee	MT5500
gross weight - lb. (kg)	4528 (2054)	1,125,000 (510 204)
length - ft (m)	14.1 (4.3)	46 (14)
width - ft (m)	5.88 (1.79)	30 (9.1)
height - ft (m)	5.28 (1.61)	24 (7.3)
payload - short ton (metric ton)	.75 (0.68)	340 (308.43)
top speed – mph (kph)	100 (161.3)	40 (64.5)
TIRE		
cost - US\$	75	27,500
height - ft (m)	2.28 (0.7)	12.8 (3.90)
weight - lb (kg)	27 (12.25)	9750 (4422)
ENGINE		
power - hp (kW)	190 (142)	3000 (2238)
fuel consumption - gal/hr (L/min)	3.33 (0.21)	136.8 (8.63)
displacement - cubic inch (L)	244.1 (4.0)	3967 (65)
oil capacity - qt (L)	6 (5.68)	264 (250)
dry weight - lb (kg)	500 (227)	15813 (7173)
Jeep is a registered trademark of the Chrysler Corp		

Capacity Planning

- Use data collected during performance testing to model system performance
- Allows "what if" analysis for relating hardware and software configuration features to anticipated load
- Landmark Predictor provides tools for data collection, system modeling, and analysis

PACE Software Tools

- Rational Performance Studio
- Landmark PerformanceWorks and Predictor
- Other Tools
 - SE Toolkit (kernel performance metrics)
 - MemTool (memory utilization)
 - ProcTool (process information)
 - Ethereal (network analysis)
 - Strace (system call traces)
- Solaris built-ins

PACE Hardware

- Sun Enterprise 5500, 8 CPU, 8 Gbyte RAM, 128 Gbyte storage array
- Sun Enterprise 3500, 4 CPU, 5 Gbyte RAM, 128 Gbyte storage array
- Sun Enterprise 3000, 4 CPU, 2 Gbyte RAM
- Network Appliance file server, 32 Gbytes
- 2 Sun Ultra-10 workstations, 512 Mb and 1 Gbyte RAM
- 1 Sun Ultra-5 workstation, 128 Mb RAM.
- 2 dual-processor 450 Mhz Pentium II PCs, 512 Mb and 1 Gbyte RAM 100 Mbit/sec EtherSwitch (upgrading to ATM).

PACE Accomplishments

- MIDB, DAWS, IPL, 5D, RAAP consolidation for USCENTCOM
 - installed on 3 E-4000 servers at USCENTCOM
- Unclassified consolidated application server for testing analysis procedures. (Uses RAAP, 5D and IPL)

Current Efforts

- IESS-RMS consolidation started 9/98 but RMS installation at AFRL/IFEB cancelled by NIMA/SOM 12/98
- Conducting independent IESS IPL consolidation for AFDCGS
 - Consolidation onto an E-5500 Solaris 2.6 platform
 - Currently completing IPL characterization
- Support for Information Assurance Automated Intrusion Detection Environment (IA:AIDE) analysis
 - Capacity planning for Oracle database

PACE Architecture for NIMA CAS

IPL Performance Analysis

- IPL (Image Product Library) provides a repository of image products where items may be queried and delivered either electronically or via conventional means
- IPL analysis was undertaken in order to consolidate with IESS
- IPL analysis allowed refinement of performance analysis methods and supporting tools

IPL Analysis Approach

- IPL 2.01 installed on E-3500 with 4 processors and 5 Gb RAM, 128 Gbyte drive array
- Broadsword Gatekeeper installed on separate machine so IPL performance could be isolated.
- Tests of product ingestion and small and large client queries conducted using 366-1000 products
- Automated testing and measurement tools used to simulate user interaction and collect and analyze performance metrics

IPL Installation Notes

- Could not use current Sun recommended patches
- Did not use recommended shell for 'dummy2' user (/bin/FALSE)
- Auditing flags were not enabled and Client Server Environment (CSE) was not installed
- DNS used for host name lookup
- All data except for database devices were on RAID volumes

IPL Characterization

- Two main operating modes
 - Ingestion instantiates products one at a time
 - Querying is multithreaded
- Exorbitant use of network ports makes consolidation difficult and hinders uninterrupted operation
- Memory requirements for acceptable operational performance conflict with vendor configurations
- Ingestion exhibits high kernel resource contention
- Heavy dependence on disk I/O during queries mandates proper load balancing to ensure adequate performance

IPL Characterization

IPL Load Generation

- Four Test Cases
 - Ingestion. Broadsword on separate server (LDK5)
 - Query (large/small). Broadsword on same server (LDK6)
 - Ingestion/Query. Broadsword on separate server (LDK7)
 - 11 concurrent user query test. Broadsword was replaced by Performance Studio (R11)

IPL Load Generation

- Initial ingestion tests were manual copy of ~125 image products into the auto-ingest directory
- Queries were single user and returned 237 records (large) and 97 records (small)
- Estimates from SEToolkit and Predictor
 - scaled CPU use as reported by vmstat.se => 8 users possible
 - scaled CPU use as reported by device utilization analysis report => 28 users possible
 - repeated trials indicated maximum of 11 users possible.
- The 11 user test used a 63 record query,

IPL Testing

- Performance Studio generates load using GUI or virtual users
- SEToolkit, Unix Smart Agent (SA), Memtool, Ethereal, and Proctool record and display data at 60 sec intervals
- Data is cross-checked between SEToolkit and Unix SA

IPL Testing

- SEToolkit was also used to monitor machine under test at higher frequencies to view transient events
- Processor, process, disk activity recorded by Unix SA for capacity planning
- Data recorded in ASCII files for input to Excel

SEToolkit Real-time Monitoring

IPL running in a quiescent mode

IPL Analysis

- Results/Conclusions are based on test cases described
- Erratic IPL behavior made testing difficult
- Results varied when tests were repeated
- Monte Carlo analysis was not possible
- IPL's greatest encumbrance is CPU servicing of the network driver
- Memory use under peak load conditions (R11) was ~3 Gb and memory was not reclaimed

IPL Memory Usage

IPL Analysis

- Number of I/O ports and connections in use was high; ~125
 ports idling, ~700 ports processing
- Ingestion is predominately single threaded and heavily I/O bound
- Queries have a propensity to expend I/O resources and require large amounts of memory
- All test activity showed high mutex locking with attendant system calls and context switching

IPL Mutex Locks/Context Switches

System Calls: Number of calls to system provided services by all processes.

Context Switching: Number of Involuntary and voluntary process cpu/memory switching Interrupts: Number of events that temporarily divert execution to service interrupting device/application.

Mutex Exclusion Locks: 200/sec very busy, > 500/sec warning condition

IPL Analysis - Capacity Planning

• Landmark Systems Predictor used for capacity planning

- Transfer function is an analytic queuing model with >90% accuracy
- Algorithms tuned for steady-state heavy load conditions
- Data from Unix SA averaged into 15 minute intervals
- Models describe average system behavior in order to predict service levels and resource usage
- Baseline model of system activity created first using Unix SA data

IPL Analysis - Capacity Planning

- Analysis of R11 data, 11 concurrent users continuously doing a 63 record query
- Workload components defined by process for IPL, Sybase, and Remainder
- View Data module revealed the following in the averaged Unix SA data
 - Physical & logical page inputs/outputs are 0.0 for all intervals
 - Number of free swap pages constant for all intervals
 - %CPU use of (87, 82, 100, 100, 84, 100, 100, 100), threshold is 95%
 - − %CPU I/O wait < 5, all intervals, threshold is 5%
 - %CPU Idle < 25, all intervals, threshold is 25%
 - %CPU use was 10 17 system, 68 88 user
 - %Disk use <= 13, all disks, all intervals, threshold is 30%
 - SSD8,12,15 had high wait times (1000 3000 ms), other disks had 0.0

IPL Analysis - Capacity Planning

Projection Points (PP) defined from View Data output

Projection Point (What If)	Implementation of Result	
CPU upgrade, add four CPUs,	Add CPU cards to chassis if	
same speed as originals (400	expansion is possible	
MHz) (PP1)		
Disk upgrade for SSD8, 12, 15,	Obtain faster disks if possible	
use 1/2 of original service times	and/or add more disks	
(PP2)		
Redistribute workload on	Move files and/or applications	
SSD8, 12, 15 with SSD11, 14	among existing disks and/or	
based on response times (PP3)	add more disks	

Source of Graphed Results

- Remainder Workload Component does actual I/O transfers and has maximum effect on CPU utilization
- IPL Sybase Workload Component had minimal effect on I/O and CPU
- IPL Workload Component, excluding system calls, had minimal effect on I/O and CPU
- Results reported for Remainder Component

Results for PP2 - Faster Disks

28 October, 1999 AFRL/IFEB

Results for PP3 - New Workload

28 October, 1999 AFRL/IFEB

Summary

- PACE provides the means for more cost-effective application deployment
 - Immediate savings on hardware/software O&M costs
 - Eventual savings on redundant application functionality, system administration staff
- PACE enhances software quality
 - Identify and resolve performance issues during design and development
 - Insure that anticipated performance demands can be met
 - Insure that desired application consolidation is viable
 - Provides a method to record and analyze performance metrics
 - Allows for capacity planning to predict system service levels and